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The motion of a matheraatieal pendulum whose point of suspension performs small-amplitude horizontal harmonic oscillations 
is considered. The non-intcgrability of the equation of motion of the pendulum is established. The periodic motion of the pendulum 
originating from a stable: position of equil~rium is obtained and its stability is investigated. Unstable periodic motions originating 
from unstable positions of equil~rium are indicated and the separatrice surfaces asymptotic to these motions are determined. 
The problem of the e~Itence and stability of periodic motions of the pendulum originating from its oscillations with arbitrary 
amplitude and rotations with arbitrary mean angular velocity is investigated. 

A number of general problems on the existence of periodic motions of a pendulum with horizontal 
vibrations of the point of suspension were considered in [1]. The motion of a pendulum in the neighbour- 
hood of resonance, when the frequency of the vibrations of the point of suspension is close to the 
frequency of its natural small oscillations were studied in [2, 3]. Subharmonic oscillations of a pendulum 
excited by horizontal oscillations of its point of suspension were investigated in [4]. 

1. F O R M U L A T I O N  OF THE PROBLEM 

Suppose a pendulum has a length l and its point of suspension undergoes horizontal harmonic 
oscillations with amplitude a and frequency fL We will assume that the amplitude of the oscillations 
of the point of suspension of the pendulum is small compared with its length so that e = a/l a 1. Changing 
to dimensionless time x = D,t and frequency ~ = g/(f~21) we can write the equation of motion of the 
pendulum in the form 

q" * O~2o sin q = esin x cos q (1.1) 

where q is the angle of deflection of the pendulum from the vertical and the prime denotes differentiation 
with respect to x. 

Equation (1.1) can also be represented in the form of canonical equations 

dq  _ a___p = (1 .2)  
dx ~p' d, ~q 

where we have introduced the momentump = q', while Hamilton's function has the form 

_ i  2 0~02cosq, H l = _ s i n x s i n q  (1.3) H=H0+P-J41; H o - - ~ p -  

When e = 0, Eq. (1.1) becomes the well-known equation of the oscillations of a mathematical pendu- 
lum. Its constant solutions q = 0 (mod 2~) and q = x (mod 2n) correspond to the stable lower position 
of equilibrium and the unstable upper position of equilibrium. Those differing from constant solutions 
correspond either to oscillations of the pendulum with arbitrary amplitude, or to rotations with arbitrary 
mean angular velocity or to asymptotic motions. 

Motion along separatrices separating regions of oscillations and rotations in the (q,p) plane correspond 
to asymptotic motions of the pendulum. We will denote by S ÷ and S- the separatrices in the upper and 
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lower half-plane, respectively, and we will specify their following equations obtained by integrating (1.2) 
and (1.3), with e = 0 

p = : 1 : 2 = 0  " - - - 3 - 2  I (1.4) 
ch000x, c o s q -  ch 2 ¢.o0~ 

where the upper sign corresponds to the S + curve while the lower sign corresponds to the S- curve. 
In the following sections we will investigate the motion of a pendulum for fairly small but non-zero 

values of e. 

2. SPLITTING OF THE SEPARATRICE AND THE 
NON-INTEGRABILITY OF EQ. (1.1) 

If the point of suspension of the pendulum is fixed (e = 0), we obtain the integral of energy H0 = 
const. We will show that for fairly small but non-zero values of e, the system of equations (1.2) with 
Hamiltonian (1.3) has no real-analytic first integral differing from a constant. To do this we will use the 
results obtained in [5, 6]. 

Consi~ ler the function 

J(a)= [ (Uo,H,)d  

where the Poisson bracket (H0, Hi) is calculated on the unperturbed separatrices S + or S-, while in H1 
we replace x by x + ct. Using (1.3) and (1.4) we obtain 

+" sin(x + ¢x) ( 2 ) 
Jt°t)=-+'2tao_..I ~"ta~; kch2"m0 x - I  dx (2.1) 

where the upper sign corresponds to separatrice S + while the lower sign corresponds to S-. 
After converting the integrand in (2.1) and integrating by parts using well-known formulae [7], we 

obtain 

(2.2) 

It obviously follows from (2.2) that both for S + and S- the function J(~) is not identically zero and 
changes sign. This indicates the splitting and intersection of both pairs of separatrices and the fact that 
there is no first integral of the system of equations (1.2) and (1.3) [5]. 

3. PERIODIC MOTIONS ORIGINATING FROM STABLE POSITIONS 
OF E Q U I L I B R I U M  

Suppose the frequency % is not close to an integer. Then, by Poincart's method [8], for fairly small 
values of e there is a unique 2x-periodic solution q. of Eq. (1.1), analytic in e and which, when e = 0, 
reduces to the solution q = 0 

q* = Eq, l + E2q2 + E3q3 + ... (3.1) 

It follows from (1.1) and (3.1) that qi =- 0 in (3.1) ifi is even, while for odd i we have 

sinx 3-2¢Oo 2 [3sin'r sin3x ] 
q,=too2_l, q3='24(tOo2_l)3[to~_l =o2_9j .... (3.2) 

Stability in the first approximation. We will put q = q. + x. We can then write the linearized equation 
of perturbed motion, using (3.1) and (3.2), in the form 

[ to~-2 sin 2~+O(e4)]x=O X u (3.3) +Lo, g 2(=o'-zi 2 ] 
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It can be verified, by means of (1.1) and (3.1), that the terms O(e 4) in Eq. (3.3) only contain even 
harmonics. 

When e = 0 we have stability. For fairly small non-zero values of e instability is possible for the linear 
differential equation (3.3) with periodic coefficients due to parametric resonance when 2o~ is equal to 
an even integer. But these values of COo are eliminated from consideration, and hence, in the non-resonant 
case investigated (the frequency too) is not close to an integer), the solution q = q. is stable for fairly 
small e in the first approximation. 

Non-linear analyst,s o f  stability. For a rigorous solution of the problem of the stability of solution (3.1), 
(3.2) we will use the methods for investigating Hamiltonian systems described in [10]. 

We will first obtain the characteristic exponents ___ik for the linearized equations of perturbed motion 
(3.3). We will seek a solution of Eq. (3.3) in the form [11] 

X = z e  ikx 

where the 2x-periodic function of time z(x) and the quantity L can be represented in the form of series 
in powers of e 

Z = Z 0 + EZ I + E2z2 + ..., ~" = toO + E ~ I  + E2~'.,2 + ... 

Setting up differential equations for the functions zi(x) and using the condition for their solutions to 
be periodic, we obtain an expression for the characteristic exponent of Eq. (3.3) 

mO z - 2  
h =tO o +E2 "l~tOo (too 2 _ I) 2 +0(£4) (3.4) 

In the Hamiltonian (1.3) we will make a replacement of variables, introducing perturbations of the 
solution q.(x) ,p . (x)  =- dq./dx by the formulae 

q = x + q*('O, p = y + P*('O 

The Hamiltonian of the perturbed motion can then be represented in the form of a series 

H = H 2 + H 3 + H 4 + . . .  (3.5) 

where Hk is a form of degree k in x, y with coefficients that are 2~-periodie in x 

_1  2 1 2 
H 2 - ~ y  +~-(t%cosq. +F.sinxsinq.)x 2 

i 
H 3 = ~(-to~ sinq. +~.sinxcosq,)x  3 

! 
H4 = - ~ (to~ cos q. + ¢ sin x sin q. )x 4 

(3.6) 

Using a linear 2If-periodic replacement of variables x, y ~ xo, y, (which differs from an identity by 
terms of order ez), the Hamiltonian HE can be reduced to the form 1-12 = E(x2. + y2.)/2. If  we then put 

x. = , / 2 r  si, . y. = ~ c o s  
too 

the Hamiltonian of the perturbed motion can be written in the form (3.5), where 

~¢r2r~/'r sin3 (p 
H 2 = k r ,  H 3 . . . .  3o~0~0 [esinx+O(e2)] 

H4 = ( - 6  + O(£2 )]r2 sin4 ~0 (3.7) 
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We will consider the stability of the motion (3.1), (3.2) for values of too and e lying on curves of third 
and fourth order resonances, when the quantities 3k and 4~ are respectively equal to an integer. 

Calculations show that in the case of resonance 3~ = 1, using a non-linear canonical transformation 
tp, r ---> V, p, the Hamiltonian (3.5), (3.7) can be reduced to the form 

H = kp + Ectp~fp cos 3~1/+ O(p 2 ), tx = a/6 / 8 + O(e) (3.8) 

Since, when e = 0, the coefficient tx in the resonance term in (3.8) is non-zero, on the resonance 
curve 3~, = 1 the periodic motion (3.1), (3.2) is unstable [10], if e is fairly small. The equation of this 
curve can be obtained from (3.4) and has the form 

1 459 to o = _ + e 2 +... 
3 512 

In the case of resonances 3~, = k, where k is even, the form of Ha in the Hamiltonian (3.5), (3.7) 
vanishes for normalization, since there are no corresponding resonance terms in it (this follows from 
the structure of the form/-/3 from (3.6) and the solution (3.1)). Consequently, the solution (3.1), (3.2) 
is Lyapunov stable on the corresponding resonance curves. 

For resonances 3~, = k, where k is odd and k ~> 5, the resonance terms in the form//3 occur in terms 
of order ek; the problem of the stability of solution (3.1), (3.2) in this case has not been investigated. 

Outside the curves of the third-order resonances the Hamiltonian of the perturbed motion can be 
reduced, by means of a non-linear canonical replacement of variables, to the following normal form: 

H = h p + c p  2 +~p2 cos4¥ + O(p~ ) 

with constant coefficients 13 and c. The motion investigated is Lyapunov stable if I c I > 1131 and unstable 
if lc I > 1131 [10]. 

Calculations show that c = -1/16 + O(e2). If the parameters too and ~ do not lie on the fourth-order 
resonance curves, we have I~ = 0; if too and e lie on these curves, we have I] = O(e2), and hence, the 
periodic motion (3.1), (3.2) is Lyapunov stable for fairly small values of e both when there are fourth- 
order resonances and when there are no such resonances. 

4. S O L U T I O N S  O R I G I N A T I N G  F R O M  U N S T A B L E  P O S I T I O N S  OF 
E Q U I L I B R I U M  

Unstable positions of equilibrium (-~, 0) and (~, 0) for e = 0 transfer, for fairly small values of e, by 
the Poincar6 small-parameter method [8] into 2x-periodic solutions analytic in e. These solutions have 
the form 

• £ 
q =+x+--T-7-7.,sin~+O(e3), p* = .-?y-~. cos ~ + O(~ 3) 

too + 1 too + I 
(4.1) 

Solutions (4.1) are unstable, which follows from the continuity of the characteristic exponents with 
respect to e of the corresponding linear equations of the perturbed motion. 

We will define, as in [12], the real, 2x-periodic with respect to x, analytic with respect to ~, TI, 
replacement of variables 

q = q" +QC~,'q,x,e~), p = p" +P(~ ,~ , '~ ,~)  (4.2) 

which reduces the Hamiltonian of the perturbed motion to normal form H = H(~), where 

= ~ ,  H = k~+a2~ 2 +a3~3+... (k ,  a2 ,a  3 . . . .  -const)  (4.3) 

The system of equations corresponding to (4.3) has the solution 

= ¢onst, ~ = to exp[(~H / ~ ) ~ ] ,  n = 11o exp[ - (~H ! ~ ) z ]  

The equalities T I = 0 and ~ = 0 define two-dimensional surfaces 
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a n d  

q=q* +O(0,1q,'c,¢), p= p* +P(0,~,z,E) 

consisting of solutiions asymptotic to the solution q*,p*, respectively, as x ---> --~ and x ---> +**. These 
surfaces are called emerging and entering separatrices, respectively. 

Calculations show that the normalizing transformation (4.2) is obtained as a result of carrying out 
the following sequence of canonical replacements of variables 

q=q*+x,  p f p * + y  (4.4) 

x '  - y" 
x= 2-~o , y = . - ( x" + y') (4.5) 

X' = X"- ~-.(A-x "2 - 2A+ x"y" + B+y "2) (4.6) 
X 

y' = y" +&--(B-x "2 +2A-x"y"-  A+y "2) 
Z 

x = + l ) ,  
A + = +0)o sinx+cosx B ± = 30)o s inx+c°sx 

0)2 + i ' 90 )  2 + I 

1 ~.q2 1 rl.~ 
x"--: ~ -  4T~o ~3 + 16O)o -960)0 

1 2 1 
Y" --" r l -  9Tmo ~'~ + t60)o ~ r l -  4-8"~mo n" 

The normalized Hamiltonian then has the form 

(4.7) 

H = 0)0~1] + 1 (~rl)2 + O(~2) + O((~TI)sA) (4.8) 

If we drop the last two terms in (4.8), the general solution of the system of equations corresponding 
to (4.8) is given by' the equalities 

1 
~=~o e~,  rl=rlo e-'~, ~ = 0 ) o + ~ 0 ~ 0  (4.9) 

The following solutions will be asymptotic to (4.9) 

= ~o eel ' ,  11 = O; ~ = O, q = 11o e-~'~ (4.10) 

Substituting (4.19) into (4.4)--(4.7), which specify the normalizing transformation, we obtain separatrice 
surfaces for each of the solutions (4.1). 

When e = 0 the separatrices emerging from the point (-re, 0) (emerging from (~, 0)) and entering 
at the point (~, 0) (entering at (-g, 0)) coincide and represent the curve S + (S-), specified by (1.4). 
When e ;e 0 splitting of the separatrices occurs, as follows from the results obtained in Section 2. 

5. P E R I O D I C  MOTIONS O R I G I N A T I N G  FROM OSCILLATIONS AND 
ROTATIONS AND T H E I R  STABILITY 

We will investigate the problem of the existence and stability of periodic motions originating from 
oscillations of the pendulum with arbitrary amplitude and its rotations with an arbitrary mean angular 
velocity. 

We will write the Hamiltonian H0 from (1.3) in action-angle variables/, w, making a canonical, 
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univalent, 2g-periodic in w replacement of variables p, q - ~ / ,  w [13], which, in the region of the 
oscillations, has the form 

q = 2 arcsin[k t sn(27r -j K(kt )w, k t )J, p = 20)ok t (2n -l K(k I )w, k t ) (5.1) 

and in the region of  rotations 

q = +2 am(/U j K(k 2)w), p = +2t%k~ I dn(n -I K(k 2)w) (5.2) 

The upper and lower signs in (5.2) correspond to anticlockwise and clockwise rotations of the pendu- 
lum, respectively. 

In (5.1) and (5.2) sn, cn, am and dn are elliptic sine, cosine, amplitude and delta amplitudes, and 
K(ki) (i = 1, 2) is the complete elliptic integral of the first kind. The quantities ki are functions of the 
action variable/ ,  given by the equations 

! = 80)0 [E(k t ) - ( I  -kl2)K(kl  )1, I = 40)°E(k2) 
n rtk 2 

where E(ki) is the complete elliptic integral of  the second kind. 
As a result of the replacement (5.1) or  (5.2), the Hamiltonian (1.3) takes the form 

/4 = / 4 o ( / )  = 20)o;  (5.3) 

where ~ = ~ in the case of oscillations ~ = k-22 in the case of  rotations, while the function 1-11(1, w, x) 
is obtained by substituting (5.1) or (5.2) into the expression forH1 from (1.3). 

The solution of  the corresponding Hamiltonian (5.3) of the unperturbed system of equations (for e 
= 0) can be written in the form 

I = I o ,  w=0) ( I )x+w0 

where the frequency to(/) = OHotOI, in the case of oscillations and rotations of  the pendulum, is given 
by the following respective expressions 

ntoo (5.4) ~t°0 0) 2 = -  
0)t = 2K (k I ), k2K(k2 ) 

Suppose that for a certain value of  I = I0, the frequency is a rational number: to = rs -1. Then, in the 
perturbed motion we have a 2~s/r-periodic solution of the form 

I = l O ,  w = r s - I 1 ; +  w 0 (5.5) 

We will investigate the problems of  the existence and stability of periodic solutions of  the system of 
equations with Hamiltonian (5.3) when e ~ 0, which reduces to the solution (5.5) when e = 0. To do 
this we will use the theorem in [14], which is as follows. 

Suppose Hl(I0, w0) is the mean value of  the function H1 on the unperturbed motion (5.5), i.e. 

H~ = 2~s 2! " Hl ( lo, ,'s-I x + wo. x )dt 

and the following three conditions are satisfied 

1. w h e n / =  Io 

~2Ho[~I2 # 0 (5.6) 

2. a w0 = w* exists such that 

~H1//gWo = 0 (5.7) 
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3. here 

~2H1/(~0 ~: 0 (5.8) 

Then a 2r~-periodic solution of the system of equations with Hamiltonian (5.3) exists, which is analytic 
in e and becomes the 2xs/r-periodic solution (5.5) of the unperturbed system when the ~ = 0. When 
the following inequality is satisfied (for I = I0 and w = w*) 

(a2Hn / a w  2)0- 'H0 / 012 < 0 (5.9) 

this periodic solutk)n is unstable, and when the following inequalities are simultaneously satisfied 

_(03~- ' ~2 _ 3 0."~ I ~4~, (5.10)  _T.o 
it is Lyapunov stabile. 

The range of oscillations. From (5.4) and the expressions for the derivations of elliptic integrals from 
[7] we  obtain 

02Ho _ li2[E(kl ) - ( I  - k 2)K(k I ).l < 0 (5.11) 
012 1 6 t i l l  - k ~ ) K J ( k i )  

and hence condition (5.6) of the theorem is satisfied. 
We obtain an expression for the function Hi by expanding the elliptic functions in Fourier series [7] 

Hi = ~ 2,~,f ~.. (2n_l)sin[(2n_l)(rs-,X+Wo)]sinxd~ 
2sK2(kn) o ,,ffin ch(K'(kt)(COoS)-t(2n-I)r) 

(5.12) 

where Kt(kl) ---- g(]i -- k~). 
An analysis of the structure of the integrand in (5.12) shows that the condition H1 ~ 0 is only possible 

whenr  = I a n d s  = 2n - 1 (n = 1, 2, 3 . . . .  ), i.e. when the frequency of the unperturbed motion is equal 
to COx =- (2n - 1) -l. Then 

H-" i = -2s -I cos sw o I A I , A n = COo 2 ch(K'(k I ) I o~ o) 

Hence we have 

OH n / O w  o = 2 s i n s w  o / A I 

From condition (15.7) we obtain 2s different values of the variable w0:w0 = w~ ffi kn/s (k = 1, 2 . . . .  , 
2s), corresponding to periodic solutions in the unperturbed motion. For these values of w0, condition 
(5.8) is obviously sittisfied since 

02"fit / aw2ol.~,=~ = 2s(-l) k / A n ¢ 0 (5.13) 

Thus, by the above theorem, for sufficiently small ~ there are 2s (s is an odd number) 2~-periodic 
solutions which, wben ~ = 0, reduce to the 2xs-periodic solutions of the form (5.5) in which we put 

i~, = "c/s + k~ls  (k = 1,2 ..... 2 s )  

To investigate the problem of the stability of these oscillations we will verify conditions (5.9) and (5.10). 
It follows from (15.11) and (5.13) that for even k inequality (5.9) is satisfied, which denotes that the 

corresponding periodic solutions are unstable. If k is odd, the first inequality of (5.10) holds, and in 
this case 
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and hence, taking (5.13) into account, we have 

3a2 , > t. w J- 0 

i.e. the second condition of (5.10) is satisfied. Consequently, for odd values of k the periodic oscillations 
of the pendulum investigated are Lyapunov stable. 

The range o f  rotations. In the range of rotations of the pendulum we have the inequality 

O2H° g2E(k l  ) > 0 (5.14) 
ffi 4(I-k2)K'~(k2) 

i.e. condition (5.6) of the theorem is satisfied. 
The function H1 in the unperturbed motion can be represented in the form of  a Fourier series as 

follows: 

21rz : l  nsin[n(rs-lx + w°)]sin'c 

Hi = :;: k2 2 K 2 (k 2) = ch(K'(k 2 )(toos) -I nrk 2) 

Its average value will be non-zero only at a frequency of  o~ = 1/s (s = 1, 2, 3 , . . . ) ,  and in this case 

H'- i ffi :I: cos sw o / (sA z ), A z = t002 ch(g'(k 2 )l~ / to 0 ) 

From condition (5.7) we obtain the following 2s values of w~ 

w ofk~/s (k=l,2 ..... 2s) 

Condition (5.8) when w0 = w] is obviously satisfied since 

02Hi / ~w0 ~ = +s(-l) k / A2 * 0 (5.15) 

Hence, for sufficiently small e there are 2s 2r, s-pefiodic motions of  the pendulum, which become 2r~- 
periodic rotations when e = 0. 

It follows from (5.14) and (5.15) that inequalities (5.9) are satisfied if the pendulum rotates in an 
anticlockwise direction (the upper sign) and k is odd, and also if the pendulum rotates in a clockwise 
direction (the lower sign) and k is even. These periodic motions of  the pendulum are unstable. 

If k is even (when the rotations are in an anticlockwise direction) or odd (when the rotations are in 
a clockwise direction), inequalities (5.10) are satisfied and, consequently, these periodic motions of the 
pendulum are the Lyapunov stable. 
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